Measuring $f_{N L}^{l o c}$ may not rule out all single-field inflation...

Slow-roll inflation using standard,
Maldacena-like + calculation

Non-vacuum initial state

Enhanced local bispectrum
$\left(k_{3} \ll k_{1} \approx k_{3}\right):$
$B^{\text {non-BD }} \propto \frac{k_{1}}{k_{3}} B^{\mathrm{loc}}$
arXiv: 1104.0244

Measuring $f_{N L}^{l o c}$ may not rule out all single-field inflation...

Slow-roll inflation
using standard,
Maldacena-like calculation

Nontvacuum initial state (...previous calculations looked for folded shape)

Enhanced local bispectrum
$\left(k_{3} \ll k_{1} \approx k_{3}\right)$:
$B^{\text {non }-\mathrm{BD}} \propto \frac{k_{1}}{k_{3}} B^{\text {loc }}$

Enhanced bispectrum from slow-roll inflation with a non-vacuum initial state arXiv: 1104.0244 What would Planck measure?

- We use the transfer function and 2D projection.

Enhanced bispectrum from slow-roll

 inflation with a non-vacuum initial state arXiv: 1104.0244 What would Planck measure?- We use the transfer function and 2D projection.
$N_{k} \equiv$ occupation number of mode with momentum k.
the expectation from the
consistency

$$
f_{N L}^{m e a s u r e d}>\frac{5}{12}\left(1-n_{S}\right) \approx 0.01
$$

f_{NL} is enhanced! What are the implications?

$$
\text { arXiv: } 1104.0244
$$

Is this f_{NL} observable?

f_{NL} is enhanced! What are the implications?

$$
\text { arXiv: } 1104.0244
$$

Is this f_{NL} observable?

- It depends on the initial state chosen
f_{NL} is enhanced! What are the implications?

$$
\text { arXiv: } 1104.0244
$$

Is this f_{NL} observable?

- It depends on the initial state chosen

Does this violate the consistency relation?
f_{NL} is enhanced! What are the implications?

$$
\text { arXiv: } 1104.0244
$$

Is this f_{NL} observable?

- It depends on the initial state chosen

Does this violate the consistency relation?

- Not exactly, though it points out some potential weaknesses.
f_{NL} is enhanced! What are the implications?
arXiv: 1104.0244
Is this f_{NL} observable?
- It depends on the initial state chosen

Does this violate the consistency relation?

- Not exactly, though it points out some potential weaknesses.

Come and ask me for specifics!

